FCL  0.6.0
Flexible Collision Library
cylinder-inl.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2016, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #ifndef FCL_SHAPE_CYLINDER_INL_H
39 #define FCL_SHAPE_CYLINDER_INL_H
40 
41 #include "fcl/geometry/shape/cylinder.h"
42 
43 namespace fcl
44 {
45 
46 //==============================================================================
47 extern template
48 class Cylinder<double>;
49 
50 //==============================================================================
51 template <typename S>
52 Cylinder<S>::Cylinder(S radius, S lz)
53  : ShapeBase<S>(), radius(radius), lz(lz)
54 {
55  // Do nothing
56 }
57 
58 //==============================================================================
59 template <typename S>
61 {
62  const Vector3<S> v_delta(radius, radius, 0.5 * lz);
63  this->aabb_local.max_ = v_delta;
64  this->aabb_local.min_ = -v_delta;
65 
66  this->aabb_center = this->aabb_local.center();
67  this->aabb_radius = (this->aabb_local.min_ - this->aabb_center).norm();
68 }
69 
70 //==============================================================================
71 template <typename S>
73 {
74  return GEOM_CYLINDER;
75 }
76 
77 //==============================================================================
78 template <typename S>
80 {
81  return constants<S>::pi() * radius * radius * lz;
82 }
83 
84 //==============================================================================
85 template <typename S>
87 {
88  S V = computeVolume();
89  S ix = V * (3 * radius * radius + lz * lz) / 12;
90  S iz = V * radius * radius / 2;
91 
92  return Vector3<S>(ix, ix, iz).asDiagonal();
93 }
94 
95 //==============================================================================
96 template <typename S>
97 std::vector<Vector3<S>> Cylinder<S>::getBoundVertices(
98  const Transform3<S>& tf) const
99 {
100  std::vector<Vector3<S>> result(12);
101 
102  auto hl = lz * 0.5;
103  auto r2 = radius * 2 / std::sqrt(3.0);
104  auto a = 0.5 * r2;
105  auto b = radius;
106 
107  result[0] = tf * Vector3<S>(r2, 0, -hl);
108  result[1] = tf * Vector3<S>(a, b, -hl);
109  result[2] = tf * Vector3<S>(-a, b, -hl);
110  result[3] = tf * Vector3<S>(-r2, 0, -hl);
111  result[4] = tf * Vector3<S>(-a, -b, -hl);
112  result[5] = tf * Vector3<S>(a, -b, -hl);
113 
114  result[6] = tf * Vector3<S>(r2, 0, hl);
115  result[7] = tf * Vector3<S>(a, b, hl);
116  result[8] = tf * Vector3<S>(-a, b, hl);
117  result[9] = tf * Vector3<S>(-r2, 0, hl);
118  result[10] = tf * Vector3<S>(-a, -b, hl);
119  result[11] = tf * Vector3<S>(a, -b, hl);
120 
121  return result;
122 }
123 
124 } // namespace fcl
125 
126 #endif
Vector3< S_ > aabb_center
AABB center in local coordinate.
Definition: collision_geometry.h:91
NODE_TYPE
traversal node type: bounding volume (AABB, OBB, RSS, kIOS, OBBRSS, KDOP16, KDOP18, kDOP24), basic shape (box, sphere, ellipsoid, capsule, cone, cylinder, convex, plane, halfspace, triangle), and octree
Definition: collision_geometry.h:54
Main namespace.
Definition: broadphase_bruteforce-inl.h:45
Base class for all basic geometric shapes.
Definition: shape_base.h:48
Cylinder(S radius, S lz)
Constructor.
Definition: cylinder-inl.h:52
S computeVolume() const override
compute the volume
Definition: cylinder-inl.h:79
S_ aabb_radius
AABB radius.
Definition: collision_geometry.h:94
S radius
Radius of the cylinder.
Definition: cylinder.h:58
Matrix3< S > computeMomentofInertia() const override
compute the inertia matrix, related to the origin
Definition: cylinder-inl.h:86
void computeLocalAABB() override
Compute AABB.
Definition: cylinder-inl.h:60
S lz
Length along z axis.
Definition: cylinder.h:61
static constexpr S pi()
The mathematical constant pi.
Definition: constants.h:49
AABB< S_ > aabb_local
AABB in local coordinate, used for tight AABB when only translation transform.
Definition: collision_geometry.h:97
NODE_TYPE getNodeType() const override
Get node type: a cylinder.
Definition: cylinder-inl.h:72
std::vector< Vector3< S > > getBoundVertices(const Transform3< S > &tf) const
get the vertices of some convex shape which can bound this shape in a specific configuration ...
Definition: cylinder-inl.h:97