FCL  0.6.0
Flexible Collision Library
shape_conservative_advancement_traversal_node-inl.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2016, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #ifndef FCL_TRAVERSAL_SHAPECONSERVATIVEADVANCEMENTTRAVERSALNODE_INL_H
39 #define FCL_TRAVERSAL_SHAPECONSERVATIVEADVANCEMENTTRAVERSALNODE_INL_H
40 
41 #include "fcl/narrowphase/detail/traversal/distance/shape_conservative_advancement_traversal_node.h"
42 
43 namespace fcl
44 {
45 
46 namespace detail
47 {
48 
49 //==============================================================================
50 template <typename Shape1, typename Shape2, typename NarrowPhaseSolver>
51 ShapeConservativeAdvancementTraversalNode<Shape1, Shape2, NarrowPhaseSolver>::
52 ShapeConservativeAdvancementTraversalNode()
53  : ShapeDistanceTraversalNode<Shape1, Shape2, NarrowPhaseSolver>()
54 {
55  delta_t = 1;
56  toc = 0;
57  t_err = (S)0.0001;
58 
59  motion1 = nullptr;
60  motion2 = nullptr;
61 }
62 
63 //==============================================================================
64 template <typename Shape1, typename Shape2, typename NarrowPhaseSolver>
66 leafTesting(int, int) const
67 {
68  S distance;
69  // NOTE(JS): The closest points are set to zeros in order to suppress the
70  // maybe-uninitialized warning. It seems the warnings occur since
71  // NarrowPhaseSolver::shapeDistance() conditionally set the closest points.
72  // If this wasn't intentional then please remove the initialization of the
73  // closest points, and change the function NarrowPhaseSolver::shapeDistance()
74  // to always set the closest points.
75  Vector3<S> closest_p1 = Vector3<S>::Zero();
76  Vector3<S> closest_p2 = Vector3<S>::Zero();
77  this->nsolver->shapeDistance(*(this->model1), this->tf1, *(this->model2), this->tf2, &distance, &closest_p1, &closest_p2);
78 
79  Vector3<S> n = this->tf2 * closest_p2 - this->tf1 * closest_p1;
80  n.normalize();
81  TBVMotionBoundVisitor<RSS<S>> mb_visitor1(model1_bv, n);
82  TBVMotionBoundVisitor<RSS<S>> mb_visitor2(model2_bv, -n);
83  S bound1 = motion1->computeMotionBound(mb_visitor1);
84  S bound2 = motion2->computeMotionBound(mb_visitor2);
85 
86  S bound = bound1 + bound2;
87 
88  S cur_delta_t;
89  if(bound <= distance) cur_delta_t = 1;
90  else cur_delta_t = distance / bound;
91 
92  if(cur_delta_t < delta_t)
93  delta_t = cur_delta_t;
94 }
95 
96 //==============================================================================
97 template <typename Shape1, typename Shape2, typename NarrowPhaseSolver>
98 bool initialize(
100  const Shape1& shape1,
101  const Transform3<typename Shape1::S>& tf1,
102  const Shape2& shape2,
103  const Transform3<typename Shape1::S>& tf2,
104  const NarrowPhaseSolver* nsolver)
105 {
106  using S = typename Shape1::S;
107 
108  node.model1 = &shape1;
109  node.tf1 = tf1;
110  node.model2 = &shape2;
111  node.tf2 = tf2;
112  node.nsolver = nsolver;
113 
114  computeBV(shape1, Transform3<S>::Identity(), node.model1_bv);
115  computeBV(shape2, Transform3<S>::Identity(), node.model2_bv);
116 
117  return true;
118 }
119 
120 } // namespace detail
121 } // namespace fcl
122 
123 #endif
Main namespace.
Definition: broadphase_bruteforce-inl.h:45
Transform3< BV::S > tf2
configuration of second object
Definition: traversal_node_base.h:88
Definition: shape_conservative_advancement_traversal_node.h:50
Definition: tbv_motion_bound_visitor.h:65
void computeBV(const Shape &s, const Transform3< typename BV::S > &tf, BV &bv)
calculate a bounding volume for a shape in a specific configuration
Definition: utility-inl.h:1049
void leafTesting(int, int) const
Leaf test between node b1 and b2, if they are both leafs.
Definition: shape_conservative_advancement_traversal_node-inl.h:66
Transform3< BV::S > tf1
configuation of first object
Definition: traversal_node_base.h:85
S distance(const Eigen::MatrixBase< DerivedA > &R0, const Eigen::MatrixBase< DerivedB > &T0, const kIOS< S > &b1, const kIOS< S > &b2, Vector3< S > *P, Vector3< S > *Q)
Approximate distance between two kIOS bounding volumes.
Definition: kIOS-inl.h:266