FCL  0.6.0
Flexible Collision Library
spline_motion-inl.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2016, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #ifndef FCL_CCD_SPLINEMOTION_INL_H
39 #define FCL_CCD_SPLINEMOTION_INL_H
40 
41 #include "fcl/math/motion/spline_motion.h"
42 
43 namespace fcl
44 {
45 
46 //==============================================================================
47 extern template
48 class SplineMotion<double>;
49 
50 //==============================================================================
51 template <typename S>
53  const Vector3<S>& Td0, const Vector3<S>& Td1, const Vector3<S>& Td2, const Vector3<S>& Td3,
54  const Vector3<S>& Rd0, const Vector3<S>& Rd1, const Vector3<S>& Rd2, const Vector3<S>& Rd3)
55  : MotionBase<S>()
56 {
57  Td[0] = Td0;
58  Td[1] = Td1;
59  Td[2] = Td2;
60  Td[3] = Td3;
61 
62  Rd[0] = Rd0;
63  Rd[1] = Rd1;
64  Rd[2] = Rd2;
65  Rd[3] = Rd3;
66 
67  Rd0Rd0 = Rd[0].dot(Rd[0]);
68  Rd0Rd1 = Rd[0].dot(Rd[1]);
69  Rd0Rd2 = Rd[0].dot(Rd[2]);
70  Rd0Rd3 = Rd[0].dot(Rd[3]);
71  Rd1Rd1 = Rd[1].dot(Rd[1]);
72  Rd1Rd2 = Rd[1].dot(Rd[2]);
73  Rd1Rd3 = Rd[1].dot(Rd[3]);
74  Rd2Rd2 = Rd[2].dot(Rd[2]);
75  Rd2Rd3 = Rd[2].dot(Rd[3]);
76  Rd3Rd3 = Rd[3].dot(Rd[3]);
77 
78  TA = Td[1] * 3 - Td[2] * 3 + Td[3] - Td[0];
79  TB = (Td[0] - Td[1] * 2 + Td[2]) * 3;
80  TC = (Td[2] - Td[0]) * 3;
81 
82  RA = Rd[1] * 3 - Rd[2] * 3 + Rd[3] - Rd[0];
83  RB = (Rd[0] - Rd[1] * 2 + Rd[2]) * 3;
84  RC = (Rd[2] - Rd[0]) * 3;
85 
86  integrate(0.0);
87 }
88 
89 //==============================================================================
90 template <typename S>
92  const Matrix3<S>& R1, const Vector3<S>& T1,
93  const Matrix3<S>& R2, const Vector3<S>& T2)
94  : MotionBase<S>()
95 {
96  // TODO
97 }
98 
99 //==============================================================================
100 template <typename S>
102  const Transform3<S>& tf1, const Transform3<S>& tf2)
103  : MotionBase<S>()
104 {
105  // TODO
106 }
107 
108 //==============================================================================
109 template <typename S>
111 {
112  if(dt > 1) dt = 1;
113 
114  Vector3<S> cur_T = Td[0] * getWeight0(dt) + Td[1] * getWeight1(dt) + Td[2] * getWeight2(dt) + Td[3] * getWeight3(dt);
115  Vector3<S> cur_w = Rd[0] * getWeight0(dt) + Rd[1] * getWeight1(dt) + Rd[2] * getWeight2(dt) + Rd[3] * getWeight3(dt);
116  S cur_angle = cur_w.norm();
117  cur_w.normalize();
118 
119  tf.linear() = AngleAxis<S>(cur_angle, cur_w).toRotationMatrix();
120  tf.translation() = cur_T;
121 
122  tf_t = dt;
123 
124  return true;
125 }
126 
127 //==============================================================================
128 template <typename S>
130 {
131  return mb_visitor.visit(*this);
132 }
133 
134 //==============================================================================
135 template <typename S>
137 {
138  return mb_visitor.visit(*this);
139 }
140 
141 //==============================================================================
142 template <typename S>
143 void SplineMotion<S>::getCurrentTransform(Transform3<S>& tf_) const
144 {
145  tf_ = tf;
146 }
147 
148 //==============================================================================
149 template <typename S>
151 {
152  // set tv
153  Vector3<S> c[4];
154  c[0] = (Td[0] + Td[1] * 4 + Td[2] + Td[3]) * (1/6.0);
155  c[1] = (-Td[0] + Td[2]) * (1/2.0);
156  c[2] = (Td[0] - Td[1] * 2 + Td[2]) * (1/2.0);
157  c[3] = (-Td[0] + Td[1] * 3 - Td[2] * 3 + Td[3]) * (1/6.0);
158  tv.setTimeInterval(this->getTimeInterval());
159  for(std::size_t i = 0; i < 3; ++i)
160  {
161  for(std::size_t j = 0; j < 4; ++j)
162  {
163  tv[i].coeff(j) = c[j][i];
164  }
165  }
166 
167  // set tm
168  Matrix3<S> I = Matrix3<S>::Identity();
169  // R(t) = R(t0) + R'(t0) (t-t0) + 1/2 R''(t0)(t-t0)^2 + 1 / 6 R'''(t0) (t-t0)^3 + 1 / 24 R''''(l)(t-t0)^4; t0 = 0.5
171  Vector3<S> Rt0 = (Rd[0] + Rd[1] * 23 + Rd[2] * 23 + Rd[3]) * (1 / 48.0);
172  S Rt0_len = Rt0.norm();
173  S inv_Rt0_len = 1.0 / Rt0_len;
174  S inv_Rt0_len_3 = inv_Rt0_len * inv_Rt0_len * inv_Rt0_len;
175  S inv_Rt0_len_5 = inv_Rt0_len_3 * inv_Rt0_len * inv_Rt0_len;
176  S theta0 = Rt0_len;
177  S costheta0 = cos(theta0);
178  S sintheta0 = sin(theta0);
179 
180  Vector3<S> Wt0 = Rt0 * inv_Rt0_len;
181  Matrix3<S> hatWt0;
182  hat(hatWt0, Wt0);
183  Matrix3<S> hatWt0_sqr = hatWt0 * hatWt0;
184  Matrix3<S> Mt0 = I + hatWt0 * sintheta0 + hatWt0_sqr * (1 - costheta0);
185  // TODO(JS): this could be improved by using exp(Wt0)
186 
188  Vector3<S> dRt0 = (-Rd[0] - Rd[1] * 5 + Rd[2] * 5 + Rd[3]) * (1 / 8.0);
189  S Rt0_dot_dRt0 = Rt0.dot(dRt0);
190  S dtheta0 = Rt0_dot_dRt0 * inv_Rt0_len;
191  Vector3<S> dWt0 = dRt0 * inv_Rt0_len - Rt0 * (Rt0_dot_dRt0 * inv_Rt0_len_3);
192  Matrix3<S> hatdWt0;
193  hat(hatdWt0, dWt0);
194  Matrix3<S> dMt0 = hatdWt0 * sintheta0 + hatWt0 * (costheta0 * dtheta0) + hatWt0_sqr * (sintheta0 * dtheta0) + (hatWt0 * hatdWt0 + hatdWt0 * hatWt0) * (1 - costheta0);
195 
197  Vector3<S> ddRt0 = (Rd[0] - Rd[1] - Rd[2] + Rd[3]) * 0.5;
198  S Rt0_dot_ddRt0 = Rt0.dot(ddRt0);
199  S dRt0_dot_dRt0 = dRt0.squaredNorm();
200  S ddtheta0 = (Rt0_dot_ddRt0 + dRt0_dot_dRt0) * inv_Rt0_len - Rt0_dot_dRt0 * Rt0_dot_dRt0 * inv_Rt0_len_3;
201  Vector3<S> ddWt0 = ddRt0 * inv_Rt0_len - (dRt0 * (2 * Rt0_dot_dRt0) + Rt0 * (Rt0_dot_ddRt0 + dRt0_dot_dRt0)) * inv_Rt0_len_3 + (Rt0 * (3 * Rt0_dot_dRt0 * Rt0_dot_dRt0)) * inv_Rt0_len_5;
202  Matrix3<S> hatddWt0;
203  hat(hatddWt0, ddWt0);
204  Matrix3<S> ddMt0 =
205  hatddWt0 * sintheta0 +
206  hatWt0 * (costheta0 * dtheta0 - sintheta0 * dtheta0 * dtheta0 + costheta0 * ddtheta0) +
207  hatdWt0 * (costheta0 * dtheta0) +
208  (hatWt0 * hatdWt0 + hatdWt0 * hatWt0) * (sintheta0 * dtheta0 * 2) +
209  hatdWt0 * hatdWt0 * (2 * (1 - costheta0)) +
210  hatWt0 * hatWt0 * (costheta0 * dtheta0 * dtheta0 + sintheta0 * ddtheta0) +
211  (hatWt0 * hatddWt0 + hatddWt0 + hatWt0) * (1 - costheta0);
212 
213  tm.setTimeInterval(this->getTimeInterval());
214  for(std::size_t i = 0; i < 3; ++i)
215  {
216  for(std::size_t j = 0; j < 3; ++j)
217  {
218  tm(i, j).coeff(0) = Mt0(i, j) - dMt0(i, j) * 0.5 + ddMt0(i, j) * 0.25 * 0.5;
219  tm(i, j).coeff(1) = dMt0(i, j) - ddMt0(i, j) * 0.5;
220  tm(i, j).coeff(2) = ddMt0(i, j) * 0.5;
221  tm(i, j).coeff(3) = 0;
222 
223  tm(i, j).remainder() = Interval<S>(-1/48.0, 1/48.0);
224  }
225  }
226 }
227 
228 //==============================================================================
229 template <typename S>
231 {
232  // TODO(JS): Not implemented?
233 }
234 
235 //==============================================================================
236 template <typename S>
237 S SplineMotion<S>::computeTBound(const Vector3<S>& n) const
238 {
239  S Ta = TA.dot(n);
240  S Tb = TB.dot(n);
241  S Tc = TC.dot(n);
242 
243  std::vector<S> T_potential;
244  T_potential.push_back(tf_t);
245  T_potential.push_back(1);
246  if(Tb * Tb - 3 * Ta * Tc >= 0)
247  {
248  if(Ta == 0)
249  {
250  if(Tb != 0)
251  {
252  S tmp = -Tc / (2 * Tb);
253  if(tmp < 1 && tmp > tf_t)
254  T_potential.push_back(tmp);
255  }
256  }
257  else
258  {
259  S tmp_delta = sqrt(Tb * Tb - 3 * Ta * Tc);
260  S tmp1 = (-Tb + tmp_delta) / (3 * Ta);
261  S tmp2 = (-Tb - tmp_delta) / (3 * Ta);
262  if(tmp1 < 1 && tmp1 > tf_t)
263  T_potential.push_back(tmp1);
264  if(tmp2 < 1 && tmp2 > tf_t)
265  T_potential.push_back(tmp2);
266  }
267  }
268 
269  S T_bound = Ta * T_potential[0] * T_potential[0] * T_potential[0] + Tb * T_potential[0] * T_potential[0] + Tc * T_potential[0];
270  for(unsigned int i = 1; i < T_potential.size(); ++i)
271  {
272  S T_bound_tmp = Ta * T_potential[i] * T_potential[i] * T_potential[i] + Tb * T_potential[i] * T_potential[i] + Tc * T_potential[i];
273  if(T_bound_tmp > T_bound) T_bound = T_bound_tmp;
274  }
275 
276 
277  S cur_delta = Ta * tf_t * tf_t * tf_t + Tb * tf_t * tf_t + Tc * tf_t;
278 
279  T_bound -= cur_delta;
280  T_bound /= 6.0;
281 
282  return T_bound;
283 }
284 
285 //==============================================================================
286 template <typename S>
288 {
289  // first compute ||w'||
290  int a00[5] = {1,-4,6,-4,1};
291  int a01[5] = {-3,10,-11,4,0};
292  int a02[5] = {3,-8,6,0,-1};
293  int a03[5] = {-1,2,-1,0,0};
294  int a11[5] = {9,-24,16,0,0};
295  int a12[5] = {-9,18,-5,-4,0};
296  int a13[5] = {3,-4,0,0,0};
297  int a22[5] = {9,-12,-2,4,1};
298  int a23[5] = {-3,2,1,0,0};
299  int a33[5] = {1,0,0,0,0};
300 
301  S a[5];
302 
303  for(int i = 0; i < 5; ++i)
304  {
305  a[i] = Rd0Rd0 * a00[i] + Rd0Rd1 * a01[i] + Rd0Rd2 * a02[i] + Rd0Rd3 * a03[i]
306  + Rd0Rd1 * a01[i] + Rd1Rd1 * a11[i] + Rd1Rd2 * a12[i] + Rd1Rd3 * a13[i]
307  + Rd0Rd2 * a02[i] + Rd1Rd2 * a12[i] + Rd2Rd2 * a22[i] + Rd2Rd3 * a23[i]
308  + Rd0Rd3 * a03[i] + Rd1Rd3 * a13[i] + Rd2Rd3 * a23[i] + Rd3Rd3 * a33[i];
309  a[i] /= 4.0;
310  }
311 
312  // compute polynomial for ||w'||'
313  int da00[4] = {4,-12,12,-4};
314  int da01[4] = {-12,30,-22,4};
315  int da02[4] = {12,-24,12,0};
316  int da03[4] = {-4,6,-2,0};
317  int da11[4] = {36,-72,32,0};
318  int da12[4] = {-36,54,-10,-4};
319  int da13[4] = {12,-12,0,0};
320  int da22[4] = {36,-36,-4,4};
321  int da23[4] = {-12,6,2,0};
322  int da33[4] = {4,0,0,0};
323 
324  S da[4];
325  for(int i = 0; i < 4; ++i)
326  {
327  da[i] = Rd0Rd0 * da00[i] + Rd0Rd1 * da01[i] + Rd0Rd2 * da02[i] + Rd0Rd3 * da03[i]
328  + Rd0Rd1 * da01[i] + Rd1Rd1 * da11[i] + Rd1Rd2 * da12[i] + Rd1Rd3 * da13[i]
329  + Rd0Rd2 * da02[i] + Rd1Rd2 * da12[i] + Rd2Rd2 * da22[i] + Rd2Rd3 * da23[i]
330  + Rd0Rd3 * da03[i] + Rd1Rd3 * da13[i] + Rd2Rd3 * da23[i] + Rd3Rd3 * da33[i];
331  da[i] /= 4.0;
332  }
333 
334  S roots[3];
335 
336  int root_num = detail::PolySolver<S>::solveCubic(da, roots);
337 
338  S dWdW_max = a[0] * tf_t * tf_t * tf_t + a[1] * tf_t * tf_t * tf_t + a[2] * tf_t * tf_t + a[3] * tf_t + a[4];
339  S dWdW_1 = a[0] + a[1] + a[2] + a[3] + a[4];
340  if(dWdW_max < dWdW_1) dWdW_max = dWdW_1;
341  for(int i = 0; i < root_num; ++i)
342  {
343  S v = roots[i];
344 
345  if(v >= tf_t && v <= 1)
346  {
347  S value = a[0] * v * v * v * v + a[1] * v * v * v + a[2] * v * v + a[3] * v + a[4];
348  if(value > dWdW_max) dWdW_max = value;
349  }
350  }
351 
352  return sqrt(dWdW_max);
353 }
354 
355 //==============================================================================
356 template <typename S>
358 {
359  return tf_t;
360 }
361 
362 //==============================================================================
363 template <typename S>
364 S SplineMotion<S>::getWeight0(S t) const
365 {
366  return (1 - 3 * t + 3 * t * t - t * t * t) / 6.0;
367 }
368 
369 //==============================================================================
370 template <typename S>
371 S SplineMotion<S>::getWeight1(S t) const
372 {
373  return (4 - 6 * t * t + 3 * t * t * t) / 6.0;
374 }
375 
376 //==============================================================================
377 template <typename S>
378 S SplineMotion<S>::getWeight2(S t) const
379 {
380  return (1 + 3 * t + 3 * t * t - 3 * t * t * t) / 6.0;
381 }
382 
383 //==============================================================================
384 template <typename S>
385 S SplineMotion<S>::getWeight3(S t) const
386 {
387  return t * t * t / 6.0;
388 }
389 
390 } // namespace fcl
391 
392 #endif
bool integrate(S dt) const override
Integrate the motion from 0 to dt We compute the current transformation from zero point instead of fr...
Definition: spline_motion-inl.h:110
S tf_t
The time related with tf.
Definition: spline_motion.h:101
Definition: motion_base.h:52
Main namespace.
Definition: broadphase_bruteforce-inl.h:45
Definition: bv_motion_bound_visitor.h:48
S computeMotionBound(const BVMotionBoundVisitor< S > &mb_visitor) const override
Compute the motion bound for a bounding volume along a given direction n, which is defined in the vis...
Definition: spline_motion-inl.h:129
Interval class for [a, b].
Definition: interval.h:50
SplineMotion(const Vector3< S > &Td0, const Vector3< S > &Td1, const Vector3< S > &Td2, const Vector3< S > &Td3, const Vector3< S > &Rd0, const Vector3< S > &Rd1, const Vector3< S > &Rd2, const Vector3< S > &Rd3)
Construct motion from 4 deBoor points.
Definition: spline_motion-inl.h:52
static int solveCubic(S c[4], S s[3])
Solve a cubic function with coefficients c, return roots s and number of roots.
Definition: polysolver-inl.h:103
void getCurrentTransform(Transform3< S > &tf_) const override
Get the rotation and translation in current step.
Definition: spline_motion-inl.h:143
Definition: bv_motion_bound_visitor.h:45
Compute the motion bound for a bounding volume, given the closest direction n between two query objec...
Definition: bv_motion_bound_visitor.h:62
Definition: taylor_matrix.h:48
Definition: taylor_vector.h:48
void getTaylorModel(TMatrix3< S > &tm, TVector3< S > &tv) const override
Definition: spline_motion-inl.h:150